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Abstract  7 

Data from coastal fisheries are often incomplete as these fisheries are usually 8 

small-scale, rendering them exempt from logbook submission requirements. Catch of 9 

dolphinfish (Coryphaena hippurus) by Taiwanese fisheries ranked second in the 10 

world but has dramatically declined to very low levels in recent years. In order to 11 

address this decline, an abundance index needed to be assessed. However, due to the 12 

small-scale of the fisheries, logbook data was not available to calculate catch per unit 13 

of effort (CPUE). This study aimed to estimate a statistically reliable index by: (1) 14 

assigning effort matrices to landing data using coastal surveillance radar data; (2) 15 

standardizing the 2001–2015 CPUE while using four approaches (classifying fishing 16 

tactics by multivariate techniques and principal component analysis) to differentiate 17 

the fisheries' effort towards catching dolphinfish from that of other target species; and 18 

(3) evaluating performances of the standardization models using a coefficient of 19 

determination estimated by cross-validation and bootstrap procedures. The approach 20 

that used a delta-generalized additive model with direct principal component 21 

procedure demonstrated the best fit. This study presented an example of deriving a 22 

statistically reliable abundance index from data-incomplete situations common for 23 

coastal fisheries, which allows follow-up population dynamics studies possible. The 24 

resulted index for dolphinfish in the Taiwanese region showed two seven-year cycles 25 

with a prominent decline in 2015. Reasons for the fluctuation are unknown but may 26 

be due to environmental factors, the fast-growing nature of the fish, and heavy 27 

exploitation of the stock by Taiwanese fisheries. 28 

 29 

 30 
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 31 

<A> Introduction 32 

Over-capacity and overfishing have caused anthropogenic threats to coastal 33 

ecosystems, which are among some of the most productive marine ecosystems 34 

(Jackson et al. 2001; Halpern et al. 2008). Data from fisheries in coastal regions are 35 

frequently incomplete as they are often exempt from logbook submission 36 

requirements or have a complicated multi-species or multi-gear nature which causes 37 

regulation difficulties in traditional management systems.  38 

 39 

Logbooks provide essential catch and effort data for calculating catch per unit effort 40 

(CPUE) to index stock abundance. When logbooks are not available or incomplete, 41 

commercial landing data can be utilized to represent catch if there is no discarding 42 

due to size-specific high-grading, at-sea dumping resulting from catches in excess of 43 

the quota, black market landings, or losses due to fish handling or processing (FAO 44 

1990-2017). Meanwhile, fishing effort can be estimated either through appropriate 45 

assumptions, such as taking each fish landing event (assumed as a trip) as a multiplier 46 

of fishing day (e.g., Sonderblohm et al. 2014), or by applying fishery-specific 47 

algorithms to fishery-independent information such as vessel monitoring system 48 

(VMS), coastal surveillance radar system (CSRS), or voyage data recorders (VDR) 49 

(e.g., Lee et al. 2010; Chang 2014; 2016). The CPUE can then be calculated. 50 

However, this raw CPUE is seldom proportional to abundance over the whole 51 

exploitation history because many factors can affect CPUE. One of the most 52 

commonly applied fisheries analyses is standardization of CPUE data to remove the 53 

effect of those confounded factors in an attempt to make CPUE proportional to 54 

abundance (Maunder and Punt 2004; Maunder et al. 2006). Target effect (the effect of 55 

changing target species, Maunder et al. 2006) is one of the most significant 56 

confounding factors for multi-species coastal fisheries. 57 

 58 

Dolphinfish (Coryphaena hippurus) is a highly migratory species widely distributed 59 

throughout tropical and subtropical waters of the three Oceans (Palko et al. 1982), and 60 

is utilized by many coastal countries, including Taiwan (Sakamoto and Kojima 1999; 61 

Rivera and Appeldoorn 2000). The total catch of dolphinfish by Taiwanese fisheries 62 

has been second only to Japan in the world 63 
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(http://www.fao.org/fishery/species/3130/en). The catch has shown three distinct 64 

stages historically (Figure 1): a low population period from 1953 through 1973; a 65 

period of steadily increasing catch between 1973 and 1991; and a third period of high 66 

catches commencing in 1992 due to an increase of fishing vessels (Chang et al. 67 

2013b). An unknown proportion of distant-water catches were included in the third 68 

period; the catch was highly variable and has since declined from a peak of 15,800 mt 69 

in 1998 to around 10,000 mt in mid-2000s, and further to 4000 mt in 2015. The 70 

decline was observed in domestic fishing ports (Figure 2) and reported by coastal 71 

fishers, where concerns regarding the status of the stock and an urgent need to 72 

estimate an abundance index emerged. However, coastal dolphinfish fisheries are 73 

considered small-scaled in terms of vessel size and exempt from logbook submission 74 

in Taiwan. Thus, no catch and effort data are available from the logbook system and 75 

the traditional approach to estimate abundance index is not feasible at this time. 76 

 77 

This study completed three tasks to obtain a statistically reliable abundance index for 78 

dolphinfish under the data incomplete situation. Dolphinfish are seldom discarded 79 

because of their high commercial value and thus the recorded landings of dolphinfish 80 

by this fishing sector approximately equals total catches. Thus, the first task was to 81 

obtain appropriate effort data. It can be simply assumed that each fishing landing 82 

event (each trip) at the fishing auction represents a fishing day (Sonderblohm et al. 83 

2014). The actual fishing days per trip (FDPT), however, may vary from one to three 84 

days depending on vessel size (tuna fishing vessel FDPT may be longer than that for 85 

traditional dolphinfish vessels, Chang et al. 2017). The assumption of a single fishing 86 

day per trip thus may underestimate the fishing effort by larger sized vessels. 87 

Therefore, this study estimates the FDPT by vessel size based on available data from 88 

CSRS which were originally installed for security and enforcement purposes (Chang 89 

2014). 90 

 91 

The second task was to standardize the CPUE calculated from landing data and FDPT 92 

estimates with consideration of target effect (the effect of different fishing tactics). 93 

There are approximately 15 different fishing gears harvesting more than 200 fish 94 

species that inhabit the highly diverse coastal ecosystems off Taiwan (Chang 2016). 95 

Except for some key fisheries, such as the precious coral fishery or bluefin tuna 96 

fisheries that have specific license regulations, fishing vessels can legally change their 97 
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targets or even fishing methods for the seasonal abundant species without reporting to 98 

the fishery authorities. Thus, several target species (fishing strategies or tactics, He et 99 

al. 1997; Pelletier and Ferraris 2000) may be involved in the data of a fishing gear, 100 

and target effect becomes an important confounding factor that needs to be considered 101 

when estimating the abundance index (Maunder and Punt 2004; Chang et al. 2011).  102 

 103 

Four approaches were designed to address the second issue. The first two 104 

pre-classified professional vessels from the data using two clustering approaches, 105 

k-means and hierarchical clustering analysis (HCA) (Silva et al. 2002), and 106 

standardized the CPUE by using the common one-stage generalized linear model 107 

(GLM). The other two approaches directly standardized the CPUE without separation 108 

of professional vessels, using a two-stage GLM (delta-GLM, Lo et al. 1992) with 109 

HCA clustered target factor and a two-stage generalized additive model (delta-GAM) 110 

with direct principal component (DPC) procedure (Winker et al. 2014). 111 

 112 

The third task was to select the final model with best statistical performance of the 113 

four standardization models. This study considered two categories of methods 114 

introduced by Hinton and Maunder (2004) for CPUE models evaluation: the Akaike 115 

information criterion (AIC) and pseudo-coefficient of determination (R2) (Faraway 116 

2016), and the cross-validation and bootstrap (Zhang and Yang 2015) for estimating 117 

the ‘bootstrap-R2’ (was referred as ‘overall-R2’ in Chang et al. 2017).  118 

 119 

This study presents the first credible CPUE index for the Taiwanese dolphinfish 120 

fishery from the final model. The approaches used in this study could be used by 121 

other fisheries to derive an abundance index with a similar data-incomplete situation. 122 

 123 

<A>Methods 124 

<C>The data.—Dolphinfish catch in the Kuroshio Current off eastern Taiwan is 125 

generally landed in the three major fishing ports, Suao, Singang, and Tungkang (from 126 

north to south of Taiwan); catches from the three ports composes over 80% of the 127 

annual total catches in Taiwan. Commercial landing data from the three ports from 128 

2001–2015 was available for this study and contains daily landing information (vessel 129 

identification, unloading date, fishing port, and weight by species) by vessel; however, 130 

no information of FDPT was available. Suao had comparatively the highest catch in 131 
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the early 2000s but declined substantially after 2007 (Figure 2). Singang is currently 132 

the major dolphinfish landing port. Dolphinfish catch was also high in Tungkang 133 

(Figure 2), however, the historical catch included an unknown but high proportion of 134 

frozen fish likely caught from different stocks in the Pacific Ocean or Indian Ocean.  135 

 136 

Dolphinfish catch in the three fishing ports show strong seasonality (Figure 2). Two 137 

fishing seasons occur in both Suao and Singang: from April to June (with 138 

comparatively higher catches) and from September to November (Chang et al. 2013a). 139 

Growth performance and mitochondrial DNA analysis determined the fish from the 140 

two seasons are from the same stock (Chang et al. 2013a), like the fish in Mexico 141 

(Alejo-Plata et al. 2011). In contrast, Tungkang has only one fishing season mainly 142 

due to the cost of fishing during the second small season. Considering the different 143 

nature of the fishing season, and more importantly the difficulty in separating the 144 

catches from distant waters as indicated above, Tungkang data was excluded from this 145 

study. 146 

 147 

Dolphinfish was caught by many fisheries in Taiwan including miscellaneous fish 148 

longline (MLL), tuna longline, gillnet, and many other gears. MLL that fished mainly 149 

in coastal area accounted for 84% of the coastal catch during 2011–2015 and was 150 

considered the major gear for dolphinfish. The size of the fishing vessels, by 151 

Taiwanese vessel size definition, mainly ranged from powered rafts1 <5 gross 152 

registered tonnage (GRT) (termed as CTR vessel category) and powered vessels of <5, 153 

5–10, 10–20, 20–50, and 50–100 GRT (CT0–CT4 categories, respectively).  154 

 155 

This study used 2001–2015 landing data of the MLL fishery. A review on the data 156 

suggested a general bimonth cycle of landing amount by species, thus a bimonthly 157 

period was used as a variable representing the periodical variations. Vessels with less 158 

than five landing trips in a bimonth period were excluded from the study to avoid data 159 

noise, and the rest of the data was referred to as Data_0 (199,605 trips). The data set 160 

contained more than 20 species which were grouped into dolphinfish (DOL), tunas 161 

(TUNA), billfishes (BIL), sharks (SHK), and other fishes (‘others’). The most 162 

                                                 
1 Raft is a powered, usually plastic tubes made, small boat. 
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important species in the group of ‘others’ was sea breams which was also a major 163 

target species of MLL fishery. 164 

 165 

<C>Estimation of fishing effort. —The commercial landing data provided no 166 

information on fishing effort. We assumed that Taiwanese small vessels that lack 167 

freezing facilities and fish in nearshore coastal waters typically unload their catch 168 

daily to keep the catch fresh. Therefore a trip can be generally considered as 169 

representing one fishing day (Sonderblohm et al. 2014). However, larger vessels may 170 

operate more days at sea before returning to ports for landing, so the relationship 171 

between FDPT and vessel size needs to be defined.  172 

 173 

To estimate the FDPT by vessel size, this study used data from the land-based CSRS 174 

that are operated by the Coast Guard Administration (CGA) in Taiwan for security 175 

purposes. The data included information on time (in minutes), position (in geographic 176 

seconds), and speed (to the nearest 0.1 knot). Presumably the speed of any fishing 177 

vessel will be zero when in port, high when heading for or returning from the fishing 178 

ground and navigating between fishing grounds, and low when fishing. Therefore, 179 

fishing activities can be identified based on vessel speed information in the radar data 180 

(Lee et al. 2010; Chang and Yuan 2014). A simplified description of the criteria used 181 

to derive fishing days from the radar data (see details in Chang 2014) included: (1) 182 

records for which speed was zero within 0.01 nm of the coastline were assumed to 183 

derive from vessels remaining in port; (2) records for which speed >5 knots were 184 

assumed to be navigating (e.g., transiting to or between fishing grounds); and (3) the 185 

rest data with speed <5 knots were considered as fishing. A vessel-day with 186 

incomplete records (an ad hoc criterion: <120 records, i.e., less than two hours, in a 187 

day; about 20% of total days), was considered non-informative and was excluded. An 188 

incomplete trip without clear identification of both leaving and returning to port or 189 

without a corresponding dolphinfish landing record after return to port was also 190 

excluded. 191 

 192 

The current CSRS design was not created with the convenience of data retrieval for 193 

research purposes in mind. Additionally, there are also security considerations in 194 

retrieving the data; the retrieval of one year’s worth of daily radar data took several 195 

months from ten CGA stations (Figure 2). Therefore, it is infeasible to obtain a series 196 
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of data from the current systems. This study used 2010 data from the eastern coastline 197 

CGA stations that contained about 10 million records, and a subset of 2015 data 198 

compiled from 15 randomly selected vessels of all sizes for reviewing the consistency 199 

of FDPT-vessel size relationships between these two periods.  200 

 201 

The FDPT-vessel size relationship was analyzed using data from vessels of CT0–CT4. 202 

FDPT was assumed to be one for rafts (CTR), which have a very limited capacity for 203 

staying over one day at sea and was generally poorly identified in the CSRS. A 204 

general linear model (GLM) was performed to test the significance of the relationship 205 

for 2010 data, considering FDPT as a model response and both the vessel size and 206 

3-month calendar season as factors. Heterogeneity of FDPT by vessel size from both 207 

the complete 2010 data and subset 2015 data was tested using the information of 208 

mean and standard deviation (SD) of FDPT by a simple meta-analysis. Mean 209 

differences were calculated and tested using the function “metacont” of R package 210 

(Chen and Peace 2013). If the FDPT were significantly different among vessel sizes, 211 

then the mean FDPT by vessel size category were applied to the whole series of 212 

landing data for estimating fishing effort assuming no significant annual variation. 213 

There was no substantial change observed in the structure of MLL vessels in terms of 214 

navigating power and storage facilities, therefore, the assumption was considered 215 

reasonable. 216 

 217 

<C>CPUE standardizations with considerations of target effect.—Except for some 218 

specifically regulated species, fishing vessels can legally undertake multiple fishing 219 

methods for target species other than they are licensed for without reporting to the 220 

authorities. For example, the MLL fishery can freely shift their target species to sea 221 

breams, dolphinfish, tunas and other fishes. Therefore, target issue is the most 222 

confounding factor to be addressed in the standardization process.  223 

 224 

Four approaches were designed to standardize the CPUE, dolphinfish catch in weight 225 

(kg) per trip divided by FDPT, with considerations of the target effect. The first and 226 

second approaches classified professional vessels in advance and applied a commonly 227 

used GLM procedure with lognormal error assumption to the professional data. The 228 

third and fourth approaches directly standardized the CPUE of Data_0 without 229 

separation of professional vessels but used a delta-GLM with HCA clusters and a 230 
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delta-GAM with principle component (PC) scores that derived from a principle 231 

component analysis (PCA) to present target factor in the model.    232 

 233 

The vessels primarily fishing for dolphinfish were referred as professional vessels, 234 

instead of targeting vessels, to avoid confusion with the ‘target factor’ in the 235 

standardization models. This study used two methods to classify professional vessels 236 

either in the first half year (January to June) or in the second half year (July to 237 

December). Some vessels may be professional vessels in one half-year but not the 238 

other, so the classification was performed for every half-year and results were 239 

combined afterwards by year. The first method used the k-means clustering, a 240 

prototype-based partitional clustering technique that attempts to find a specific 241 

number of clusters (k) which are represented by their centroids (Tan et al. 2006). The 242 

intention of this application was to develop a general rule to classify the professional 243 

vessels using catch composition for the management agencies. Since k-means starts 244 

with a random choice of cluster centers, it may yield different clustering results on 245 

different runs of the algorithm. In addition, k-means clustering assumes the joint 246 

distribution of features within each cluster is spherical which is hard to be satisfied. 247 

Therefore, this study applied the second method using HCA, which produces a 248 

hierarchical clustering by starting with each point as a singleton cluster and then 249 

repeatedly merges the two closest clusters until a single, all-encompassing cluster 250 

remains (Tan et al. 2006). The number of clusters (k) for the two approaches was 251 

decided by the ‘elbow method’ (Kassambara 2017). Data from the professional 252 

dolphinfish vessels defined by k-means clustering were referred to as Data_1, and 253 

those defined by HCA was referred to as Data_2. 254 

 255 

For the first and second approaches, the covariates considered in the GLM included: 256 

year (2001–2015), bi-monthly period (1–6), target factor, fishing port (Suao and 257 

Singang), and vessel size category (CTR, CT0–CT4). Ln(CPUE+0.1) are modelled 258 

assuming a lognormal distribution. A simple forward method was used to determine 259 

the variables to be included in the model. Standardized residuals and quantile-quantile 260 

plots were used to examine the violation of lognormal assumption. Although the 261 

models were applied to professional vessels’ data, the landing data also suggested that 262 

those vessels shifted their target species from dolphinfish to other abundant species 263 

within the half-year period. Therefore, the HCA was applied again to each dataset and 264 
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the computed cluster code was assigned as an assumed target factor. The first two 265 

approaches were referred to as ‘Data1_kmeans+GLM_HCA’ and 266 

‘Data2_HCA+GLM_HCA’, respectively. 267 

 268 

Data_0 contained many zero-dolphinfish landing records resulting from dolphinfish 269 

abundance seasonality and target effects. To address the effect of high zero records, 270 

the third approach used a two-stage delta-GLM which consists of a positive-catch 271 

model (PCM) and a zero-proportion model (ZPM) (Lo et al. 1992). For the positive 272 

catch model, Ln(CPUE) are modelled assuming a lognormal distribution; while the 273 

zero-proportion model predicts the presence or absence of dolphinfish using logistic 274 

regression. The standardized index was the product of these model-estimated 275 

components. Further model descriptions can be found in Maunder and Punt (2004). 276 

The same covariates as designed for the GLM of the previous two approaches were 277 

included in the delta-GLM (i.e., year, bi-monthly period, target effect, fishing port 278 

and vessel size category). The target effect was simply addressed by the HCA on 279 

catch composition data, and the approach was referred to as ‘Data0+dGLM_HCA’. 280 

Without classification of professional vessels, the number of data records for this 281 

approach was substantially higher than the previous two approaches. 282 

 283 

The fourth approach applied the DPC procedure (Winker et al. 2013): The procedure 284 

uses continuous PC scores derived from a PCA of the catch composition data, as 285 

nonlinear predictor variables in a GAM to adjust for the effect of temporal variations 286 

in fishing tactics (Winker et al. 2014). Each CPUE record was assigned PC scores 287 

which were used as continuous, rather than categorical, variables in the model. GAM 288 

was a semi-parametric extension of GLM with the underlying assumption that the 289 

functions are additive and that the components are smooth (Guisan et al. 2002). GAM 290 

was used, instead of GLM (MacNeil et al. 2009), because of the concern whether 291 

GLM is suitable to handle potentially nonlinear relationships between CPUE and PC 292 

covariates (Winker et al. 2013). The optimal number of PCs were decided based on 293 

Cattel’s scree-test in combination with the Kaiser-Guttman rule (Guttman 1954; 294 

Cattell 1966).  295 

 296 

To address the issue of high fractions of zero catches, the fourth approach adopted a 297 

similar procedure as the third approach, using a two-stage delta-GAM that composed 298 
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of a PCM and a ZPM. The same covariates as previous approaches were used in the 299 

model. This approach is termed as ‘Data0+dGAM_DPC’. 300 

 301 

<C>Selection of final standardization model.—Hinton and Maunder (2004) 302 

introduced three categories of methods to evaluate the performance of the 303 

standardization models: The first two (likelihood ratio/AIC/Bayes factors, and cross 304 

validation) are based on the ability to predict the catch or CPUE by assuming that the 305 

models most accurately predicting the mentioned factors are the most efficient 306 

predictors of relative abundance. The third category (system-based testing) is based 307 

on the consistency of the estimates, with auxiliary information on the year effect that 308 

represents the annual relative levels of abundance (see Chang et al. 2017 for a 309 

demonstration). Currently there is no integrated stock assessment model developed 310 

for the dolphinfish stock in the Kuroshio Current and not many data on the stock are 311 

available, hence the third method is not feasible in this case. Therefore, this study 312 

applied the first two methods to evaluate model performances.  313 

 314 

The AIC can avoid the overfitting issue due to adding parameters to the model by 315 

introducing a penalty term for the number of parameters (Yu et al. 2014) and was 316 

used to decide the final variable combination of each model run (with smallest values). 317 

AIC can also be used to compare performances of different model; however, the AIC 318 

are based on likelihood function, which in its turn depends on sample size. As such, 319 

caution is required when comparing one-stage GLMs and two-stage delta-GLMs 320 

using AIC with different sample sizes (Hoffmann 2016). In addition, it is complicated 321 

for the cases using two-stage delta-GLM or delta-GAM because of the difficulties in 322 

defining the variance parameters of the likelihood function. 323 

 324 

Therefore, this study used AIC to decide the final variable combination of each model 325 

but used ‘bootstrap-R2’, which determines the overall correlation between the actual 326 

and predicted values while avoiding overfitting issues (Chang et al. 2017), to compare 327 

model performance. Pseudo-R2 (Faraway 2016) was used only for single model 328 

discussion. The bootstrap-R2 was calculated through cross validation and bootstrap 329 

procedure (Efron 2004; Zhang and Yang 2015). The data were firstly split randomly 330 

into two subsets: a model-building set and a validation set. The validation set 331 

provided the observed CPUE and the predicted (theoretical) CPUE that calculated 332 
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from the model built from model-building set, and the R2 value was then calculated 333 

from these pairs of data. The final mean and standard deviation of R2 was obtained 334 

from 200 replications of the above procedures and was then termed as bootstrap-R2 335 

(see details in Chang et al. 2017). Iterating 200 times was sufficient as a larger 336 

number of iterations did not produce substantially different estimates. 337 

 338 

<A>Results 339 

<B>Estimation of Fishing Effort 340 

This study identified 2,497 trips from 59 vessels (CT0–CT4) in 2010 for studying the 341 

relationship between FDPT estimated from radar data and vessel size categories. The 342 

remaining trips could not be used due to a lack of corresponding radar records. This 343 

lack of radar records was due to a variety of reasons, including environmental factors 344 

(see Chang 2014) or landing vessels associated with ports not covered by the radar 345 

data. 346 

 347 

The GLM on the relationship of FDPT to vessel size and season on 2010 data 348 

suggested that the FDPT are significantly different among vessel size categories 349 

(F4,1852 = 13.403, P < 0.001) but not significantly different among seasons (F3,1852 = 350 

0.293, P = 0.830). The box-plot distribution of FDPT by vessel size is shown in 351 

Figure 3; and the mean ± SD, calculated from the GLM with only vessel size as factor, 352 

are 1.143 ± 0.378, 1.222 ± 0.328, 1.386 ± 0.521, 1.799 ± 0.698, and 2.375 ± 0.744, for 353 

CT0–CT4, respectively. The meta-analysis on the mean and SD by vessel sizes of 354 

2010 complete data and 2015 subset data suggested no significant heterogeneity was 355 

observed (Cochran Q = 2.97, P = 0.563). There was no observation of substantial 356 

changes in equipment for the vessels to fish longer at sea during the studying period, 357 

therefore, the means were used as multipliers and applied to the whole study period to 358 

estimate the fishing days. The fishing day per trip for CTR were all assumed as one 359 

day.  360 

 361 

<B>Classification of Professional Vessels 362 

The scree plot from the elbow method (Figure 4A) suggests five clusters as the 363 

optimal cluster number for the k-means clustering method. Each cluster has different 364 

dominant species compositions (Figure 5A) indicating five different types of target 365 

vessels: dolphinfish, billfishes, tunas, ‘others’, and sharks. The catch composition of a 366 
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dolphinfish cluster against the clusters of the other four fish groups (Figure 6) 367 

suggests 40% as the rule-of-thumb dolphinfish composition threshold for classifying 368 

professional vessels: a vessel could be classified as a dolphinfish professional vessel 369 

when its dolphinfish catch ratio is higher than 40% in a half-year period. By this rule, 370 

3,856 (in 2012) to 6,415 trips (in 2007) from 64 (2012) to 133 (2007) vessels were 371 

classified as professional trips during the study period. Total professional trips were 372 

73,883 (Data_1). 373 

 374 

The HCA method also suggests five optimal number of clusters (Figure 4B) and the 375 

same five types of target vessels (Figure 5B). Cluster 1 was defined as the 376 

professional trips which comprises 3,584 (2012) to 6,099 (2007) trips from 57 (2012) 377 

to 128 (2007) vessels. Total professional trips were 71,490 (Data_2). 378 

   379 

<B>Targeting Factors for CPUE Standardizations 380 

Scree plots for selecting the number of clusters for the HCA as target factors in the 381 

GLMs in the first two approaches (Data1_kmeans+GLM_HCA and 382 

Data2_HCA+GLM_HCA), did not show clear ‘elbows’ (Figures. 4C and 4D), i.e., the 383 

elbows cannot be unambiguously identified as those in Figures. 4A and 4B. This 384 

might be because the major target effect has already been accounted for by the 385 

classification of professional vessels in the two approaches. Three clusters for the 386 

GLM on Data_1 and four clusters for the GLM on Data_2 were decided through 387 

arbitrary tests (Figures. 4C and 4D).  388 

  389 

Different from the first two approaches, the scree plot for the third approach 390 

(Data0+dGLM_HCA) applied to original Data_0 has shown a clear ‘elbow’ (Figure 391 

4E). Five clusters were defined as mainly targeting tunas with bycatch of dolphinfish 392 

and ‘others’, solely on dolphinfish, on billfishes, on sharks, and on ‘others’, 393 

respectively (Figure 5E), and had almost the same as the results from the professional 394 

vessels classification. This clustering result represented the different targeting clusters 395 

in the MLL landing data. The catch compositions of each cluster were consistent over 396 

time (Figure 7A). Dolphinfish (Cluster 2) was caught mainly in the second-third and 397 

fifth-sixth bimonthly periods (Cluster 2 in Figure 7B), however, the proportion varied 398 

by year. Dolphinfish was mainly fished by small vessels of CTR and CT1–2 (>75%) 399 
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(Figure 7C), and the Cluster 2 fishing effort peaked in 2007 and declined thereafter 400 

(Figure 7D).   401 

 402 

For the fourth approach (Data0+dGAM_DPC), the Cattel’s scree-test in combination 403 

with the Kaiser-Guttman rule suggested optimal three PC axes (eigenvalue greater 404 

than one). Dolphinfish targeting effect was mainly associated with PC1: lower scores 405 

representing stronger targeting on dolphinfish and, vice versa, higher scores 406 

representing stronger targeting on other fishes (Figures 8 and 9). PC2 and PC3 were 407 

mainly associating with targeting effect of the rest fish groups. 408 

 409 

<B>CPUE Standardizations and Final Model Selection 410 

Statistics of the final standardization model runs of the four approaches with smallest 411 

AIC of each model run were shown in Table 1. The diagnostic residual plots and 412 

quantile-quantile plots suggested normality in the distribution of the residuals and no 413 

patterns within covariates for the GLMs and the PCMs of the delta-GLM and 414 

delta-GAM. The Kolmogorov–Smirnov tests indicate that the residual distributions do 415 

not significantly differ from the normal distribution assumption (p > 0.100). The 416 

analyses of deviance suggested that all the main effects, including target effects, were 417 

significantly different from zero (p < 0.001).  418 

 419 

Since the two classified professional datasets are different with different sample sizes, 420 

the AIC cannot be used to compare the performance of the approaches. The 421 

bootstrap-R2 of the first two approaches were 0.268 ± 0.002 (mean ± SD) and 0.297 ± 422 

0.003 (Table 1), respectively, indicating that the second approach using HCA to 423 

define professional data has a slightly better fit. The bootstrap-R2 of the last two 424 

approaches were 0.387 ± 0.003 and 0.873 ± 0.001, respectively. Obviously, the fourth 425 

approach that used delta-GAM with DPC procedure has a higher model fitting 426 

performance and was considered as the ‘optimal’ standardization model. 427 

 428 

Though there were differences in model fitting results, generally the four standardized 429 

CPUE time series had similar trends (Figure 10A). According to the optimal model 430 

result, the standardized CPUEs showed an increasing trend beginning in 2001, 431 

peaking in 2007, and followed by a drastic drop in 2008 with a continuous decline to 432 

its lowest level in 2012. Afterward the CPUE increased to its second peak in 2014 but 433 
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with a second decline in 2015. The decline in 2015 was more substantial in this 434 

approach than in the first two approaches. The standardized CPUE trends obviously 435 

differed from the nominal CPUEs which almost showed no trend (Figure 10B).  436 

 437 

<A>Discussion 438 

<B>Estimation of Fishing Effort 439 

Accurate fishing effort data is crucial to understanding stock dynamics through 440 

calculation of CPUE as a proxy of abundance. Fishing effort information is 441 

commonly sourced from logbooks submitted by fishers, although many studies have 442 

discussed concerns on the accuracy and sufficiency of the information from this 443 

source (Bordalo-Machado 2006; Chang and Yuan 2014; Walter et al. 2014). 444 

High-resolution measurement of fishing effort can be derived from 445 

fishery-independent high-tech data, such as VMS or VDR data (Gerritsen and Lordan 446 

2011; Chang and Yuan 2014; Chang 2016) in the absence of reported fishing effort. 447 

However, many fisheries are unable to afford the installation of these systems. As a 448 

result, many studies rely on landing records to estimate effort by assuming that each 449 

landing event represents a fishing day (one FDPT) (e.g., Leitão et al. 2014; 450 

Sonderblohm et al. 2014). 451 

 452 

Logbook data was not available for the small-scale coastal dolphinfish fishery in 453 

Taiwan. This study derived effort from landing data on trip basis but adjusted the 454 

FDPT by vessel size according to inferences from radar data. Radar data suggested 455 

the FDPT for the MLL fishery has a significantly positive relationship with vessel 456 

size but has no statistical relationship with season. Generally, vessels smaller than 20 457 

GRT (CT0–CT2) landed catches daily (FDPT = 1); and vessels larger than 20 GRT 458 

(CT3–CT4) fish for about two days on average before landing (Figure 3). Radar data 459 

showed that the dolphinfish fishing ground is not far from the coastline (Chang 2014), 460 

and the fish were mainly caught by small MLL (< 20 GRT, estimated mean FDPT < 461 

1.5) (Figure 7) who have limited navigation power and storage capacity. Most were 462 

aged vessels and operated within the nearshore coastal waters of Taiwan; more newly 463 

built vessels generally shifted to be tuna longliners fishing for higher valued tunas and 464 

marlins in farther areas or in the high seas. Hence, if there was no geo-referenced data 465 

such as radar data or VMS/VDR data to estimate the relationship, it might be 466 

A
u

th
o

r 
M

a
n

u
s
c
ri
p

t



 

This article is protected by copyright. All rights reserved 

plausible to assume that most fishers unload their catch every fishing day to supply 467 

the fresh product preferable to Taiwanese markets.  468 

 469 

The 2010 radar data that was used to adjust the FDPT by vessel size covered over 470 

85% of the professional vessels and was considered representative. However, the 471 

CSRS has a limitation in scanning range (normally 12 nm of the coastline but can be 472 

farther in fine weather). Larger vessels may fish beyond the limit, in which case the 473 

trip will be excluded if the records within the limit are less than two hours in a day 474 

before the vessel returns to port (may be different from its leaving port). This situation 475 

may diminish the effect to adjust the underestimation of effort for large vessels. 476 

However, the composition of vessel size was rather stable for dolphinfish-targeting 477 

clusters across the years (except for 2005 and 2006; Figure 7C), i.e., the proportion of 478 

bias might be generally consistent through time. In addition, the majority of vessels 479 

were small MLL vessels (even for 2005 and 2006) that normally fished for 480 

dolphinfish in nearshore coastal waters, which means the magnitude of 481 

underestimation might not be large. Hence, we assumed the estimated mean FDPT 482 

were applicable, and the uncounted efforts might have limited impact on the relative 483 

CPUE series.  484 

 485 

<B>Classification of Fishing Tactics within the MLL Fishery 486 

Total landing records from the MLL fishery (Data_0) was almost double that of the 487 

professional datasets Data_1 and Data_2 (Table 1), suggesting that the original data 488 

contained a high proportion of vessels that had not fished for dolphinfish or only 489 

occasionally caught dolphinfish as bycatch. Catch compositions of the clusters in 490 

Figure 5 indicated that the fishery has several target species and therefore is a 491 

multi-species multi-fleet fishery, or a mixed fishery with different target species. 492 

Heterogeneity of targeting tactics in the fishery will degrade the accuracy when 493 

assessing the relationship between the total fishing effort and the resulting fishing 494 

mortality on the exploited stock; hence the targeting tactics of the fishery need to be 495 

classified in advance (He et al. 1997; Pelletier and Ferraris 2000). 496 

 497 

Species composition of the catch was commonly used to classify the targeting tactics 498 

through simple multivariate techniques by considering the similarities between the 499 

species assemblages (He et al. 1997; Silva et al. 2002). Target species may not be 500 
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accurately reflected by the species composition itself, however, in many cases, this 501 

can be mitigated by associating the clusters with additional information such as vessel 502 

characteristics (He et al. 1997; Pelletier and Ferraris 2000). 503 

 504 

In this study, the first three approaches using species composition multivariate 505 

techniques obtained similar results of five clusters with different targeting tactics 506 

(Figures 5A, 5B and 5E). Clusters from Figure 5E were supplemented with additional 507 

information and demonstrated that the MLL fishery actually contained five métiers 508 

with specific target species (Figure 7) rather than simply ‘miscellaneous fishes’. 509 

Métier-1 was mainly vessels <50 GRT targeting tunas with bycatch of dolphinfish 510 

and sharks in Suao where the three fish groups were abundant in the coastal waters. 511 

Métier-2 consisted of vessels < 20 GRT targeting dolphinfish during the main fishing 512 

seasons of March–June and September–December (bi-month basis). This fleet 513 

contributed the highest fishing effort in the fishery. Métier-3 consisted largely of 514 

vessels of 10–50 GRT from Singang targeting billfish in autumn and winter when the 515 

Northeast monsoon was strong. Métier-4 was mainly by 5–20 GRT vessels targeting 516 

sharks in Suao from November through February. Métier-5 was mostly vessels <5 517 

GRT targeting ‘other’ species.   518 

 519 

Classification of vessels with the same targeting tactics is an important topic of 520 

fisheries management (Russo et al. 2011). Dolphinfish is an important target species 521 

to Taiwanese fisheries, and managers with no computation capacity requested a 522 

simple rule to identify professional vessels to facilitate management purposes. The 523 

k-means clustering results (Figure 6) in this study suggested a simple 40% rule, 524 

dolphinfish catch composition during a half-year period, which is easily 525 

understandable and acceptable to fishers. Although the selection of a fixed value 526 

could be arguable because the catch ratio would vary by year and region, empirically, 527 

however, the professional vessels classified using this 40% rule have similar 528 

performances as those using HCA, which requires intensive computation, in the 529 

CPUE standardization (Data2_HCA+GLM_HCA, Table 1) and the resulted relative 530 

CPUE trends of both approaches were almost identical (Figure 10A). Nevertheless, 531 

the fixed criterion may need to be reviewed periodically.  532 

 533 

<B>CPUE Standardizations and Model Performances 534 
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The AIC were only used to define the final parameter combinations and were not used 535 

to compare model performances because the datasets contained different sample sizes 536 

(Hoffmann 2016). The larger a sample size, the larger the calculated likelihood, and 537 

therefore AIC becomes smaller. AICs could not be combined for the delta models 538 

(delta-GLM and delta-GAM) either, which was concerning since model runs of each 539 

step implies a different variance parameter and it is not clear if the variance parameter 540 

should be counted in the AICs.  541 

 542 

Alternatively, R2 determines the correlation between the actual and predicted values 543 

and can be a straightforward statistic for model selection in linear models when the 544 

number of parameters is fixed (Kutner et al. 2005). There are more parameters in 545 

two-stage delta models than in a one-stage model, which may increase the likelihood 546 

of overfitting and produce misleadingly high R2. Estimating the bootstrap-R2 value 547 

through cross-validation and bootstrap procedures (Efron 2004; Zhang and Yang 548 

2015) could avoid the illusion of increased R2.  549 

 550 

The bootstrap-R2 of the first two approaches applying GLM to professional data 551 

(Table 1) suggested the second approach has slightly better fitting performance than 552 

the first one. Meanwhile, the bootstrap-R2 of the two delta methods showed higher 553 

values than the first two approaches, especially when applying the DPC procedure 554 

developed by Winker et al. (2013): 0.873 for the fourth approach 555 

(Data0+dGAM_DPC) compared to 0.387 for the third approach (Data0+dGLM_HCA) 556 

and 0.268–0.297 for the first two approaches with classification of professional 557 

vessels. This suggested that it is unnecessary to classify professional vessels for 558 

CPUE standardization in this context. Mechanisms for the significant difference 559 

between the fourth approach and the other three approaches were not examined. The 560 

difference likely resulted from the advantages introduced in Winker et al. (2013), 561 

where the DPC approach can avoid determining the optimum number of clusters with 562 

rather artificial boundaries and the combinations of different proportions of targeting 563 

tactics are modelled as a continuum of all possible combinations.  564 

 565 

Another possibility of the high bootstrap-R2 in the fourth approach was the overfitting 566 

of a large of amount of zero-catch in the Data_0. The pseudo-R2 of PCM component 567 

of the delta-GAM with positive dolphinfish catch was 0.530, while that of ZPM was 568 
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0.954, implying that zero-catch records might have substantial effect on the 569 

estimation of bootstrap-R2. Winker et al. (2013) directly removed the zero-catch 570 

records, assuming that only a minor fraction of observed zeros would result from 571 

failed targeting effort (‘true zero’) in abundant target species. However, this study 572 

assumed that the decline of dolphinfish catches would result in an increasing 573 

proportion of zeros, and thus why the delta-method was applied. This could increase 574 

the estimation of bootstrap-R2 in delta-GAM. However, this was not observed in the 575 

delta-GLM case (the third approach), perhaps because the zero-catch records had 576 

been assigned to the bycatch clusters from the HCA method. Even so, the pseudo-R2 577 

of 0.530 for PCM is still much higher than the other approaches, suggesting the fourth 578 

approach had a better fitting performance than the other approaches. An additional 579 

test using one-stage GAM on positive catch records (removed all zero-catch records) 580 

resulted in almost identical CPUE series with that of delta-GAM, except for a slightly 581 

lower CPUE level in 2007. 582 

 583 

The first two approaches used data from pre-defined professional vessels. It may be 584 

arguable that professional vessels may make every effort to increase their fishing 585 

efficiency when dolphinfish abundance becomes lower, and consequently may result 586 

in a rather stable CPUEs over time. This concern was considered insignificant for this 587 

study because dolphinfish is not a high-ranked profitable species such as tunas and 588 

billfishes, and the major targeting vessels are relatively small and traditional. In 589 

addition, dolphinfish is just one of the targets of the multi-species mixed fishery and 590 

there is no restriction for the fishery to shift target species. When the catch rate of 591 

dolphinfish is low and unprofitable, the small-scale vessels may have neither strong 592 

incentive nor capability to improve their fishing efficiency for dolphinfish and may 593 

simply switch to target other fish groups.  594 

  595 

Hyperstability may occur when a fishery targets fish spawning aggregation in which 596 

the CPUE remains elevated as stock abundance declines (Ellis and Wang 2007; 597 

Erisman et al. 2011). On the other hand, hyperdepletion may occur when ignoring the 598 

effect of an unfished area to the overall stock trend index, especially for fisheries that 599 

move progressively across large region (Walters 2003). Inclusion of spatial effect in 600 

the standardization model may help avoid these situations (Walters 2003). The 601 

geo-location information should be available from radar data, however, as previously 602 
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explained, there are limitations in obtaining the data. MLL vessels usually fish in 603 

adjacent waters close to home ports where they land the catch. Interviews with 604 

industry leaders confirmed the assumption that the fishing areas were consistent 605 

throughout the studied period. In addition, including fishing ports as a covariate, as in 606 

the study of Pacific bluefin tuna CPUE standardization with similarly incomplete data 607 

(Chang et al. 2017), could mitigate the deficiency in the lack of spatial data.  608 

 609 

Distribution of dolphinfish is correlated with environmental variables such as sea 610 

surface temperature and ocean current (Martínez-Ortiz et al. 2015). Lack of 611 

geo-location data of the operations has also limited the use of environmental 612 

information as covariates in the models in this study. However, environmental 613 

variables are often highly correlated to each other and may also correlate with other 614 

spatial and temporal factors. Therefore, the effects of many environmental factors 615 

may not be significant in the standardization models even if the factors were included 616 

(e.g., Su et al. 2008). The dolphinfish fishing ground was relatively small and in the 617 

warm Kuroshio Current (Figure 7 of Chang 2014), which means environmental 618 

changes in the region may not have been large enough to be influential and were 619 

rather implied in the bi-month factor.  620 

 621 

<B>Summary and Management Implications 622 

Dolphinfish catch has substantially declined during recent decades, driving the need 623 

to develop credible CPUE indices. However, due to the small-scale coastal fisheries 624 

catching dolphinfish, logbooks were unavailable to provide information for the 625 

calculation of CPUE. This study, for the first time, examined Taiwanese coastal 626 

fisheries that are complicated with multi-gear and multi-tactics features and selected 627 

MLL for developing the indices. The study assumed landing weight was equivalent to 628 

catch, since generally no market discarding occurred on this species, and then 629 

assigned a reliable effort matrix (in number of fishing days) as well as targeting 630 

information to the landing data. The effort was estimated based on the common 631 

practice of assuming one fishing day for one landing event but was adjusted by vessel 632 

size using radar data from CSRS.  633 

 634 

Four approaches were designed to standardize the CPUE, taking into account the 635 

target effect for this multi-species fishery. The first two pre-classified professional 636 
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vessels through two multivariate statistical methods before performing the 637 

standardization with one-stage GLM. A simple rule for identifying the professional 638 

vessels was determined for managers to serve management purposes. The other two 639 

directly standardized the CPUE using dedicated two-stage GLM or GAM to address 640 

the abundant zero-catch data and using an HCA clustering technique or DPC 641 

procedure to address the target issue. Based on bootstrap-R2, this study suggested the 642 

fourth approach, i.e., the use of the DPC procedure to address the target effect in the 643 

delta-GAM, as the optimal model, and that pre-classification of professional vessels 644 

might not be necessary in the standardization.  645 

 646 

The index from the optimal model showed two seven-year cycles with peaks in 2007 647 

and 2014 (Figure 10), and the last year (2015) showed a concerning decline. While 648 

there is no information to explain the causes of these fluctuations, they may be 649 

associated in part with environmental factors on the recruitment (as in the Gulf of 650 

Mexico, Kitchens and Rooker 2014) and the exceptionally fast growth rates and early 651 

maturation nature of the fish (Oxenford 1999; Schwenke and Buckel 2008; Chang et 652 

al. 2013a). It may also be related to the heavy exploitation from 2004–2007 and low 653 

fishing pressure after 2007 (Figure 7D, Figure 1), as well as the fishing pressures of 654 

Japan, the largest dolphinfish harvester, exploiting the same stock as Taiwan (Chang 655 

et al. 2013a), and thus cooperation in analyzing the indices and further designing 656 

management regulations should be encouraged. 657 

 658 

In 2015, a basic Fisheries Improvement Project (FIP) for the dolphinfish fishery in 659 

eastern wasters off Taiwan (Hsin-Kang Mahi Mahi FIP2) was established with the 660 

participation of representatives from stakeholders3, research institutions and 661 

governments. The FIPs are for fisheries that are willing to mitigate fisheries impacts 662 

on marine resources by encouraging the sharing of responsibility by the private 663 

sectors and not subject to a high standard ecolabeling approach. Although there is no 664 

management measure stipulated for dolphinfish fisheries, the implementation of the 665 

FIP should have positive impacts on the stocks while at the same time facilitating the 666 

collection of better data from the fisheries. Before higher quality data can be 667 

                                                 
2 http://www.taiwanfip.tw/fip_introduction_en.html 
3 Including service wholesaler, processing plant, trade agents and local fishermen. 
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sufficiently collected for scientific analyses, this study provides an alternative and 668 

statistically reliable abundance index from an incomplete data situation to understand 669 

the regional stock status and for precautionary fishery-impact mitigation planning, 670 

which is the goal of the FIP. 671 
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 834 

FIGURE 1. Historical catches of dolphinfish in Taiwan during 1953–2015 (including 835 

coastal and distant-water catches). Catches over 1953–1992 were estimated from 836 

Chen et al. (1999), and those over 1993–2015 were adopted from the Fisheries 837 

Agency (2008-2017). 838 

  839 

FIGURE 2. Catch trends of dolphinfish and other major species groups during 840 

2001–2015 (DOL, TUNA, BIL, SHK for dolphinfish, tunas, billfishes and sharks, 841 

respectively) from the three major fishing ports of Taiwan (red solid stars: Suao, 842 

Singang and Tungkang). Catches of Tungkang contained an unknown proportion of 843 

frozen products that were considered caught in distant waters. Circles along the coast 844 

are locations of the coastal surveillance radar stations in the eastern Taiwan. 845 

 846 

FIGURE 3. Fishing days per trip (FDPT) against vessel sizes. 847 

 848 

FIGURE 4. Scree plots of different clustering methods. Left panels are for classifying 849 

professional vessels using (A) k-means clustering on Data_1 and (B) HCA clustering 850 

on Data_2. Right panels are for defining target factors in the standardization models 851 

using HCA clustering on (C) Data_1, (D) Data_2 and (E) Data_0.  852 

 853 

FIGURE 5. Catch composition by cluster of different clustering methods. Left panels 854 

are for classifying professional vessels using (A) k-means clustering on Data_1 and 855 

(B) HCA clustering on Data_2. Right panels are for defining target factors in the 856 

standardization models using HCA clustering on (C) Data_1, (D) Data_2 and (E) 857 

Data_0. DOL, TUNA, BIL, SHK, and ‘others’ represent dolphinfish, tunas, billfishes, 858 

sharks, and other fishes, respectively. 859 

 860 

FIGURE 6. Catch composition of various clusters defined from k-means clustering 861 

method, by major fish groups. DOL, TUNA, BIL, SHK, and ‘others’ represent 862 

dolphinfish, tunas, billfishes, sharks, and other fishes, respectively. Each circle point 863 

is one-trip data belonging to one of the clusters defined by the k-means clustering 864 

method: black for dolphinfish clusters, green for tunas clusters, cyan for sharks 865 

clusters, red for billfishes clusters, and blue for other-fishes clusters. Generally, a 866 

dolphinfish cluster has catch composition approximately over 40%. 867 
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 868 

FIGURE 7. Annual catch composition (A) by species, (B) by bi-month, and (C) by 869 

vessel size category, and (D) annual fishing days, of the five clusters obtained from 870 

HCA clustering method on Data_0. DOL, TUNA, BIL, SHK, and ‘others’ represent 871 

dolphinfish, tunas, billfishes, sharks, and other fishes, respectively. 872 

 873 

FIGURE 8. Correlations biplots showing the loadings of the fish groups plotted on 874 

principle components (A) PC1 and PC2, (B) PC1 and PC3, and (C) PC2 and PC3. 875 

 876 

FIGURE 9. Scatter plots between dolphinfish CPUE and the principle components 877 

(PC1–PC3). 878 

 879 

FIGURE 10. Comparisons of dolphinfish relative CPUE standardized by the four 880 

approaches (A): GLM with HCA clustered target factor on professional vessel data 881 

that classified using k-means method (Data_1) and HCA method (Data_2); 882 

delta-GLM with HCA clustered target factor on original data (Data_0); and, 883 

delta-GAM with DPC procedure on original data (Data_0). Panel (B) shows the 884 

nominal CPUE of different datasets.  885 
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TABLE 1. Statistics and bootstrap-R2 of the four standardization approaches. ZPM 1 

stands for zero-proportion model and PCM for positive-catch model. The bold values 2 

are bootstrap-R2 for comparison of model performance.  3 

  4 

 
Null 

deviance 
Null d.f. 

Residule 

deviance 

Residule 

d.f. 
Pseudo-R2 Bootstrap-R2 

 

1st approach: GLM with HCA targeting factor on professional Data_1 from k-means method 

(Data1_kmeans+GLM_HCA) 

 362979 73882 264507 73853 0.271 0.268 ± 0.002 

 

2nd approach: GLM with HCA targeting factor on professional Data_2 from HCA method 

(Data2_HCA+GLM_HCA) 

 351744 71489 247649 71460 0.296 0.297 ± 0.003 

 

3rd approach: delta-GLM with HCA targeting factor on original Data_0 (Data0+dGLM_HCA) 

ZPM 274722 199604 165622 199570 0.397  

PCM 257093 109755 173649 109722 0.325  

    0.387 ± 0.003 

 

4th approach: delta-GAM with DPC targeting factor on original Data_0 (Data0+dGAM_DPC) 

ZPM 274722 199604 12774 199557 0.954  

PCM 257093 109755 120831 109699 0.530  
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